Deep Latent Regularity Network for Modeling Stochastic Partial Differential Equations

نویسندگان

چکیده

Stochastic partial differential equations (SPDEs) are crucial for modelling dynamics with randomness in many areas including economics, physics, and atmospheric sciences. Recently, using deep learning approaches to learn the PDE solution accelerating simulation becomes increasingly popular. However, SPDEs have two unique properties that require new design on models. First, model approximate of SPDE should be generalizable over both initial conditions random sampled forcing term. Second, terms usually poor regularity whose statistics may diverge (e.g., space-time white noise). To deal problems, this work, we a neural network called \emph{Deep Latent Regularity Net} (DLR-Net). DLR-Net includes feature block as main component, which maps condition term set features. The processing features is inspired by structure theory provably compose basis represent solution. then fed into small backbone operator get output. We conduct experiments various dynamic $\Phi^4_1$ stochastic 2D Navier-Stokes equation predict their solutions, results demonstrate proposed can achieve SOTA accuracy compared baselines. Moreover, inference time 20 times faster than traditional numerical solver comparable baseline

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

global results on some nonlinear partial differential equations for direct and inverse problems

در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...

Reduced Order Modeling of Some Nonlinear Stochastic Partial Differential Equations

Determining accurate statistical information about outputs from ensembles of realizations is not generally possible whenever the input-output map involves the (computational) solution of systems of nonlinear partial differential equations (PDEs). This is due to the high cost of effecting each realization. Recently, in applications such as control and optimization that also require multiple solu...

متن کامل

Algorithm Refinement for Stochastic Partial Differential Equations

We construct a hybrid particle/continuum algorithm for linear diffusion in the fluctuating hydrodynamic limit. The particles act as independent random walkers and the fluctuating diffusion equation is solved by a finite difference scheme. At the interface between the particle and continuum computations the coupling is by flux matching, and yields exact mass conservation. This approach is an ext...

متن کامل

Postprocessing for Stochastic Parabolic Partial Differential Equations

We investigate the strong approximation of stochastic parabolic partial differential equations with additive noise. We introduce post-processing in the context of a standard Galerkin approximation, although other spatial discretizations are possible. In time, we follow [20] and use an exponential integrator. We prove strong error estimates and discuss the best number of postprocessing terms to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence

سال: 2023

ISSN: ['2159-5399', '2374-3468']

DOI: https://doi.org/10.1609/aaai.v37i6.25938